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Electric Monopoles in Topological Field Theories 

M. Temple-Raston 1 

Received November 18, 1996 

A tensor product generalization of B ^ F theories is proposed that has a 
Bogomoi'nyi structure. Nonsingular, stable, finite-energy particle-like solutions 
to the Bogomol'nyi equations are studied. Unlike Yang-Mills(-Higgs) theory, 
the Bogomol'nyi structure does not appear as a perfect square in the Lagrangian. 
Consequently, the Bogomol'nyi energy can be obtained in more than one way. 
The added flexibility permits electric monopole solutions. 

I.  I N T R O D U C T I O N  

A Bogomol 'nyi structure in a Lagrangian field theory frequently yields 
classical, nonsingular, stable, finite-energy particle-like solutions to the varia- 
tional field equations. Moreover, particle-like solutions--called Bogomol 'nyi 
soli tons--appear to have far fewer quantum corrections than might usually 
be expected. For instance, the classical mass spectrum for Bogomol 'nyi 
solitons has no quantum correction; this is due to a general relationship 
between supersymmetry and the Bogomol 'nyi  structure (Witten and Olive, 
1978; Hlousek and Spector, 1993). Also, for some Bogomol 'nyi  solitons 
(e.g., the BPS magnetic monopole) the quantum corrections to the scattering 
differential cross section have been found to be remarkably and unexpectedly 
small (Temple-Raston and Alexander, 1993). 

In this paper we study a generalization of  the B A F topological field 
theories introduced by Horowitz (1989). These theories are comprised of 
generally covariant topological gauge field theories. The generalization inves- 
tigated here uses a tensor-product structure in the Lagrangian to produce a 
Bogomol'nyi structure in this class of topological field theories. Solitons 
analogous to the BPS magnetic monopole in Yang-Mills-Higgs theory are 
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found. Unlike Yang-Mills-Higgs theory, however, our Lagrangian does not 
rely on a metric structure. The metric structure used to define the Hodge 
star-operator in Yang-Mills-Higgs theory is responsible for turning the Bogo- 
mol'nyi soliton into a magnetic monopole. Without the metric in the tensor- 
product theory we shall construct explicit electric monopole solutions to the 
field equations. 

2. TFTs AND BOGOMOUNYI STRUCTURES 

The Lagrangian field theory that forms the basis of our work is given by 

H(A, B) = ( ((H A ~ IE) ^ (IE | Ks))  - �89 | KB) 2) 
JR 4 

+ (A ~ B, H A ~ K s) (1) 

where H ~ and K s are gauge field curvatures over R 4 taking values in the 
adjoint bundle E over R 4. Here le is the identity transformation on the adjoint 
bundle E. The tensor products are taken on the Lie algebras, and the wedge 
products on the forms. The form of this Lagrangian is based on the topological 
gauge field theories studied some time ago by Horowitz (1989) and the 
theories of Baulieu and Singer (1988). By introducing two gauge potentials 
instead of having just one, the four-dimensional gauge field theory examined 
here contains source-free electrodynamics and Yang-Mills theory (Temple- 
Raston, 1995). 

Our interest in this paper is restricted to topological solitons with rest 
mass. Therefore without loss of generality we can restrict our investigation 
to stationary topological solitons. This leads us to dimensionally reduce the 
four-dimensional theory using a gauge symmetry in time (Forgfies and Man- 
ton, 1980). We do this now. We denote R 4 quotiented by the time-symmetry 
by/143. Let the gauge group equal U(n). Let P be a principal U(n)-bundle 
over the three-manifold M3. Denote the space of connections on P by H(P). 
A vector bundle E --> M3 is associated to the principal bundle P by the adjoint 
representation. For each connection A e H(P) there is an exterior covariant 
derivative D 3 acting on sections of E. The covariant derivative defines a 
curvature H A for the vector bundle E by DADAs = HAs, where s is a section 
of the vector bundle ~: E ---> M3. The curvature H A can be interpreted as a 
2-form on M3 taking values in E. An equivariant Lie algebra-valued Higgs 
field ~A on M3 is paired with the connection A. In dimensional reduction the 
Higgs field arises naturally as the component of the vector potential in the 
direction of the gauge symmetry (Forgfics and Manton, 1980). After the 
reduction of the Lagrangian (1), our starting point now becomes the energy 
functional 2~%(A, B, (I)A, (I)a), given by 
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Iu ((le | K a) A (le | Da~Pn)) 
3 

- ( ((IE | K a) ^ (DAdPA (~ le)) 
JM 3 

- ~ ((H A | IE) A (I E ~ DBdPB)> + (A *-" B, H A *-~ K B, dP A *-* f~B) (2) 
JM 3 

In the expression (2) there are two c u r v a t u r e s  H A, K a and two Higgs fields 
qba, ~B corresponding to two connections A, B E M(P). We assume that 
there is an invariant positive-definite inner product (-} on Ex which varies 
continuously with x ~ M3. The last term in (2) symmetrizes the energy 
functional in the dependent fields. The energy functional is complicated, but 
as we shall see it inherits useful geometric structure from the four-dimensional 
theory, presented and studied in Temple-Raston (1995, 1997). In coordinate 
notation the energy functional 2xr%(A, B, ~A, riPS) can be rewritten as 

ra3 K ~ij( D~kldP a)~ tr( TaT~ 

- fro3 K~u(LY~kI~A)~ tr(Tale) tr(TOle) 

fM3 a B b -- n[ij(Dk]dPB) tr(Tale) tr(Tble) + (A ~ B, dP A ~ dPB) (3) 

Square brackets denote skew-symmetrization, and Latin subscripts run from 
1 to 3. Since the gauge group is U(n) we have used the Killing-Caftan form 
for the bundle inner product ( . )  normalized so that (I~) = 1. 

By completing the square, we can rewrite the energy functional (2) as 

2at% = ~ ((H a ~ Ie -- IE ~ K B) ^ (DA~A | Ie -- I~ | DBdPB)> 
Jn 3 

-- ~ ((oAdPA ~ IF.) ̂  ( HA (~ [E)> "~- (A ~ B, dPA ~ ~ )  (4) 
JM 3 

Let E^ and Et~ denote the vector bundle E equipped with either the connection 
A or B, respectively. We recall that the curvature of the tensor product bundle 
EA | E* is given by (Kobayashi, 1987) 

CA| = HA | le -- le | K B 
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By defining dp -- dp A | le -- le | dPs, then 

DeA~e*BdP = DAdPA | le -- le | DBdp8 

The first integral in (4) is thus a topological invariant: the winding number. 
The Bogomol'nyi equations determined by the energy functional (4) are 

HA ~ IE = IE t~ K B 

DAdpA ~ l E = l E ~ DsdP8 (5) 

The first equation in (5) is clearly a zero-curvature condition on the tensor 
product bundle EA | E*. Reintroducing a coordinate system, we can rewrite 
the equations in (5) as 

H o. = K U = FU(~t) 

DAd) A = D~dP~ = Ei(il) (6) 

F and E are a real-valued two-form and one-form on M3, respectively, and 
I is the identity matrix. Written in this form, solutions to the first equation 
in (6) are recognized--geometers call them projectively flat connections 
(Kobayashi, 1987). For bundles of rank greater than one, projective flatness 
is a strong condition (Kobayashi, 1987). 

We emphasize that unlike the theory of BPS magnetic monopoles, the 
first integral in the energy functional (4) is not in the form of a perfect square, 
and with one or the other Bogomol'nyi equation satisfied the energy functional 
attains the Bogomol'nyi energy: 

2"i'r~ fM3 A a b fM3 B a b (Dtk~A) Hijl tr(T~T b) + (7) = (O[kdPB) Kijl tr(TaT b) 

The extra flexibility in the topological field theory will lead us to the construc- 
tion of electric monopole solutions. 

3. PROJECTIVELY FLAT SOLITONS 

Presumably topological monopoles, if they exist, are analogous to the 
BPS magnetic monopole field configurations in Yang-Mills-Higgs theory. 
Therefore we shall use the same symmetry-breaking mechanism (Goddard 
and Olive, 1978). The solitonic core region is placed at the origin. Let G 
and Go be compact and connected gauge groups, where the group Go is 
assumed to be embedded in G. It is sufficient to have the Higgs covariantly 
constant, DAdPA = 0, for the gauge group of the core region G to be spontane- 
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ously broken to Go outside of the core region. In regions far from the core 
where we assume that DA~A ----- 0, it can be shown that 

H A = dPaFa (8) 

where F3 ~ A2(M3, EGo), a two-form on M3 taking values in the Go-Lie 
algebra bundle, denoted by EGo here (Goddard and Olive, 1978). An equivalent 
expression to (8) can be written when DB~B = 0. We shall assume that both 
~a and ~B ---) ale for some constant a, when r > >  1 and where spontaneous 
symmetry breaking has occurred. When G = U(n) and Go = U(I), FA becomes 
a pure imaginary two-form on M3. 

The Bogomol'nyi solitons defined by (6) have an energy (7) topologically 
fixed by 

2"rr% = fM d(tr(dPaHa)) + fg d(tr(dPsK~)) 
3 3 

: fS2 tr(4PAHA)+fS2 tr(~I~B KB) (9) 

where S z is a large sphere surrounding the monopole core. Substituting 
equation (8) into equation (9) and using the asymptotic normalization condi- 
tion (~2) = a 2 for both Higgs fields, we find that the energy is fixed by 

a 2 

We can view FA and Fa as curvatures on the line bundles LA --~ S 2 and L8 
~ S 2 determined by ~a and ~B, because from equation (8) FA and FB are 
the projections of H A and K B on La and LB. 

We shall now argue that it is appropriate and natural to interpret 
a f Fa12~r and a f F812~ in (10) as the magnetic charge g and the electric 
charge q, respectively. This interpretation is arrived at by returning to the 
four-dimensional action (1) and observing that standard (source-free) electro- 
dynamics is regained when the vector potential B is chosen so that 

K B= -+*H a (11) 

where a space-time metric is introduced through the Hodge star operator. 
The variational field equations from the action functional (1), 

DAK B + DBH a = 0 (12) 

become the Yang-Mills equations (for each independent vector potential). 
A Bogomol'nyi structure similar to that presented above is also present in 
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the four-dimensional theory. The corresponding Bogomol'nyi equations again 
give projective-flatness, 

H A = K 8 = iFl  

where F is a real valued two-form on R 4 (Temple-Raston, 1997). If we take 
F in 

F A = (HAdPA)  = - i F  tr(~A) 

to be the Faraday tensor, then using (11), F8 becomes 

F B = ( * H A d p B )  = - i * F  tr(~8) 

With the space-time metric and the Faraday tensor introduced in this way 
and ~A = ~S = a/e on S 2, it then follows that a f FA/2~r = a f B .  dS/2rr 
is the magnetic charge g and a f FJ2rr  = a f E .  dS/2"rr is the electric charge 
q. Moreover, the magnetic and electric charges are now seen to be proportional 
to topological invariants--the Chern numbers associated to complex line 
bundles with curvatures FA and FB, respectively. The Bogomol'nyi energy is 
given by 

% = a2(cl(La) + cl(Le)) = a(g  + q) (13) 

As a result both the solitonic electric and magnetic charges in this theory 
are 'quantized' at the classical level, and the stability of the topological 
monopole is assured by (13) if either the electric or magnetic charge is 
nonvanishing. 

Let us now consider nonsingular, particle-like U(n) solutions to both 
Bogomol'nyi equations in (6) that are spontaneously broken in the far-field. 
From the projective flatness of the curvatures in the Bogomol'nyi equations 
(6), H A = K s = F(iI),  and from equation (8) we conclude that F = q~AFA 
= q~eFs, where ~A = q~a(il), dP B = q~s(il) and q~A, q~z are real-valued functions 
on M3. The normalization of the Higgs fields implies that q~2A = q~ = a 2. 
From this we find that 

I s F A = + - I s F n 2  2 (14) 

Therefore nonsingular, stable, particle-like solutions to both Bogomol'nyi 
equations (6) are dyons. 

To obtain electric monopoles there would appear to be two possibilities, 
both resulting from a weakening of one or the other Bogomol'nyi equation 
(6). We do not favor relaxing the projective flatness of the solitons, however, 
because we then lose mathematical control over the topological properties 
of the configuration space (Kobayashi, 1987). Instead, we shall maintain 
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projective flatness and let go ofDAdpA = DBdOS = E(//), at least asymptotically. 
Furthermore, since little empirical evidence exists to suggest the independent 
existence of two gauge potentials, it is desirable to restrict to a smaller set 
of topological solitons defined by A = B. We shall call these solutions 
'diagonal projectively-flat solitons.' 

4. DIAGONAL PROJECTIVELY FLAT E L E C T R I C  
MONOPOLES 

In this section we demonstrate the existence of diagonal projectively- 
flat U(2) electric monopoles ( A =  B, ~a, ~B) on R 3 situated at the origin. 
Following the example of the BPS magnetic monopole, we define the outside 
of the monopole to be where the gauge field is broken with a covariantly 
constant Higgs field (Goddard and Olive, 1978). The electric monopoles we 
will construct have the following properties: 

1. A = B are projectively flat over all of R 3 and take values in the 
Lie algebra of U(2). 

2. A = B are asymptotically flat on R 3. 
3. d~a, O8 are sufficiently differentiable functions on R 3 taking values 

in the Lie algebras of SU(n) and U(n), respectively. 
4. D~B = 0 and Dadi~a ~ O, asymptotically. When Ds~B = 0, we 

assume that ~B = ale for a nonzero constant a. 
5. The electric charge of the monopole is nonzero, and the magnetic 

charge vanishes. 

Condition 4 implies that the gauge symmetry for K B is broken to U(1) 
asymptotically, and that the gauge group for H a is not permitted to break far 
from the origin. For condition 5, assume that a two-sphere of radius r, S~, 
lies completely outside the monopole that is centered at the origin. The 
Bogomol'nyi energy (9) is then given by 

1 Is F8 tr(~A~B) a2fs . . . .  FB (15) 
% 2"tr z 2-~ z 

The first integral in (15) is the magnetic charge. The magnetic charge vanishes 
since ~a taking values in the Lie algebra of SU(2) is traceless and ~B = ale, 
conditions 3 and 4, respectively. The second term is the topological electric 
charge; the electric charge must obviously be nonzero for an electric mono- 
pole. We shall show that a solution satisfying conditions 1-5 exists. 
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In general, a U(2) diagonal topological soliton (A = B, ~a, qbS) must 
be of  the form 

Aj = B i = { l iaj 
\ cj ibj ] 

(iota - - ' y ~ ,  dp B = (iots --~*~ (16) 

aj, bj,  ota, ~a, otB, ~B are all real-valued functions on R 3. The first Bogomol 'nyi  
equation in (6) states that the vector potential is projectively flat, H A = K 8 
= F( i l ) .  A straightforward calculation of H A informs us that 

Fiy = Oiaj - cgjai -t- i ( c ~ c  i - ci~cj) 

= Oib j - O j b i -  i ( c ~ c i -  ci*cj) (17) 

and that 

Oicj -- Ojci -- i[(ciaj - cjai) -- (cibj - cjbi)] = 0 (18) 

Equation (17) in coordinate-free notation becomes 

F = d a  + iC*Ae  = d b -  iC*AC (19) 

and implies that c* ^ c = 2id(b - a), that is, c* A C is exact. Similarly, 
equation (18) can be rewritten as 

d c + / ( a - b )  A c  = 0  (20) 

where a = ai dx ~, b = bi dx  i, and c = c i d~. Next we write down a solution 
to equations (19) and (20) that can be shown later to have no magnetic charge 
and a nonvanishing electric charge. 

We introduce the complex coordinate ~ = Pr(r, O, q~) that comes from 
the stereographic projection Pr of the spherical polar coordinate (r, 0, q~) on 
the two-sphere of radius r minus the north pole, Sr 2 - {N}, to the complex 
plane minus infinity, CPI\{~}. The projected 1-forms a and b on CPI\{~} 
will also be denoted by a and b. Assume that a and b on CP~\{ oo } differ by 
the nonexact real-valued l-form • that is, b = a + • Now define 

e(D=i4~[expifp (b - a)] d~ (21) 

where the contour integration is along the stereographic projection of the 
great circle ~/ from the south pole of S~ to the spherical polar coordinate 
given by (r, 0, q~) = Prl(~). Assume that both the 1-forms a and b vanish 
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at the south pole for all values of r. It is easy to verify using the fundamental 
theorem of calculus that (21) satisfies equation (20) and that c* ^ e = 2i d X 
---- - 2 d ~  ^ d~. 

Turning to the Higgs fields, recall that we require that A be su(2)-valued 
everywhere, and that the gauge group for B is broken to U(I) asymptotically 
(DSdPn --~ 0 as r --~ ~). Since the Higgs field ~A takes values in the Lie 
algebra of SU(2), then [['YAl] 2 = 1 + (XA~ A. Take Ota = [~a = 0, SO that [[~/AI[ 2 

= 1. For ~B, condition 4 states that the Higgs fields ~B = ale, asymptotically. 
Substitute (16) into the asymptotic equation DB~8 = 0 to find that on 
the diagonal 

d(aa + [3B) = 0, da~ = i(c~/~ - c*~/a) (22) 

and off the diagonal, 

d~a = i((fSs - eta)e + (a - b)~/e), complex conj. (23) 

For I ~ I > > 1, let 

1 
ors( ~, ~) = a + (1 + 1~12) 2 + O((~)-3)  

1 
13s([, ~) = a + (1 + 1~12) 2 + O ( ( ~ ) - 3 )  

(xB = [~B = a asymptotically is consistent with the requirement that ~B = 
alE, and satisfies the asymptotic equations (22) and (23). The remaining 
asymptotic equations for "/n become 

Ci~t ~ -- C'*t'~B -~" 0 

Oi'YB + i'y~(bi - ai) = 0 

~/s = 0 is a solution to these equations and is also consistent with the 
requirement that ~B = ale. 

Now we compute the electric charge. The broken gauge far-fields are 
given by 

F A ~ (nadpA} = - i F  tr((I)A) = 0 (24) 

FB ~ (Knd~B) = - i F  tr(~B) = F(ot8 + [3B)/2 

The magnetic charge of the solution, given by l i m r ~  a f FAI27r, vanishes 
because ~a is traceless. The solitonic electric charge is given by 

2 , r r q = a l i m f s F S = _ 2 i a f  c d ~ ^ d ~  r---+ o0 2 pl  (1 + 1~12) 2- -  --4wa 

where a is closed, but b is not closed. The sphere S 2 is centered around the 
monopole at the origin and is assumed to lie completely in regions where 
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the gauge field has been broken. Notice that the electric charge within S 2 
depends only on the gauge potential, and is time-independent, gauge-invariant, 
and unchanged under any continuous deformation of the enclosing surface. 
This demonstrates the existence of an electric monopole within the classical 
field theory. 

Which particles, if any, might these solitons be? Note that U(2) is double 
covered by SU(2) • U(1). Also, the classical mass and particle spectrum of 
the projectively-flat electric monopole compare favorably with that of the 
intermediate vector bosons. The mass of the electric monopole is M = aq, 
the same as the mass of the W -+. Moreover, there are no quantum corrections 
to the classical mass, because of the general relationship between supersym- 
metry and the Bogomol'nyi structure (Witten and Olive, 1978; Hlousek and 
Spector, 1993). The Z0 presumably corresponds to the case where H A = K 8 
= Fie, but DAdpA =/= 0 and DB~8 :~ 0, that is, there is no symmetry breaking. 
The gauge far-fields in that case are non-Abelian and would therefore pass 
unnoticed through the detectors. Although uncharged, the soliton's energy is 
topologically fixed by 

2~r% = Isz tr(d~AHA) + Is2 tr(d~BKB) 

= -Is2 F(~a) - fs2 F(~8) 

So it, too, is stable under perturbations. We propose therefore that the solitons 
in the tensor product topological field theory defined in Section 2 form a 
provisional model for the W -+ and Zo intermediate vector bosons. Recall that 
many years ago Montonen and Olive (1977) found quantum evidence to 
suggest that intermediate vector bosons should appear as Bogomol'nyi soli- 
tons, dual in some sense to the BPS magnetic monopole. 

5. CONCLUSION 

The tensor product energy functional (2) has a Bogomol'nyi structure 
and solitonic particle solutions. Since the Bogomol'nyi equations do not arise 
from a perfect square, there is more flexibility in achieving the Bogomol'nyi 
energy. A class of solitons has been investigated in some detail by restricting 
to those solutions of the Bogomol'nyi equations where the gauge potentials 
are equal, A = B. When both Bogomol'nyi equations are satisfied stable, 
particle-like solitons are dyonic. By relaxing the Bogomol'nyi structure, 
stable, particle-like solutions can be found that carry only an electric charge. 
Similarities exist between the heavy intermediate vector bosons in the standard 
model and the solitons in this model. 
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As with the BPS magnetic monopole, the moduli space of electric 
monopoles is the configuration space of the physical theory. At present the 
moduli space is too large to be useful. This is easy to see: aside from being 
differentiable on R 3 and some asymptotic boundary conditions, we demand 
nothing else from the Higgs fields in Section 4. Further analytic or geometric 
structure is clearly required. We note that the projective-flatness given to us 
by the Bogomol'nyi equations is, on certain holomorphic vector bundles, 
equivalent to algebraic stability. Algebraic stability is frequently employed 
to construct well-behaved moduli spaces (Kobayashi, 1987). 
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